“Traditional representation methods used by architects and engineers for hundreds of years, such as scale drawings, renderings, and three dimensional scale models, contain only a small part of the information needed to interpret and assess the quality of the design” (Khemlani et al., 1998).
The first Computer Aided Design [CAD] application was invented in 1963 by Ivan Sutherland (Broquetas, 2010a). Widespread adoption of this new technology in the AEC industry did not happen in a few years, it took decades, and when it happened the Adoption of CAD software in AEC firms was progressive, and it is nowadays widely spread in virtually all architectural firms (Broquetas, 2010b). Some resisted the adoption of the CAD systems, and others have argued that CAD poses some challenges to creative design (Lawson, 2002). Nevertheless, in 2009, the result of a study and poll amongst AEC industry leaders, showed CAD as the greatest advance in construction history (Architect’s Journal, 2009).
Despite the relevance taken by CAD in the AEC industry, Khemnlani et al. (1998) argued that CAD simply imported the traditional representation methods used for hundreds of years by architects and engineers into the computer environment, and with that, the informational deficiencies that these methods imply were incorporated into the new way of designing and documenting projects. They foresaw the need for a more intelligent way of documenting projects that “will embody some of the knowledge added to the interpretation of drawings by the human observers” (Khemnlani et al., 1998 : p. 50).
While the AEC industry was slowly adopting CAD, the product development and manufacturing industry [PDM] adopted it much faster and the use in this industry rapidly evolved into a modelling process (Lee, 2008). This modelling approach raised the need for the PDM industry to develop practices of better integration of multidisciplinary teams. Due to this need, “since 1984 the International Organization for Standardization (ISO) has been working on the development of a comprehensive standard for the electronic exchange of product data between computer-based product life-cycle systems” (Pratt, 2001 : p. 102). This standard is named STandard for the Exchange of Product model data [STEP] and is included in the ISO 10303: Automation systems and integration, Product data representation and exchange (Ibid.) and its goal is to “develop common representations of complex products for communicating information between CAD and other design applications” (Eastman and Siabiris, 1995 : p. 284)
In the AEC Industry, the idea of integrated product models for buildings, or Building Product Models [BPM] has been around for many years with one of its pioneers being Charles Eastman (Eastman and Siabiris, 1995; Eastman, 1999) who has used the term since the late 70s of the 20th century. The integrated approach was for the first time named Building Information Modelling [BIM] by Autodesk employee Phil Bernstein (Wikipedia, 2010) although many argue that the term is essentially the same as BPM (Yessios, 2004), so Eastman should be given the “father of BIM” title.
The concept of BIM is thus not so new, but thanks to the computational speed and memory available today (Yessios, 2004) and the strong push from software vendors (Holzer, 2007) the interest in BIM has raised very importantly in recent years both in scholarly circles (Figure 1.3) as well as in the general public (Figure 1.4).
BIM is, as it will be seen in the following section, a set of tools and processes with the potential to change the AEC Industry in the same way the modelling approach changed the manufacturing sector. Both technological requirements and commercial interests are also aligned to allow widespread implementation of BIM. With this alignment of factors, the author of this dissertation sees no better time to analyze its potential benefits for the AEC Industry.
Show me more...
MT - Using BIM as a PM Tool: 2.2 – The role of BIM in improving the delivery of construction projects
Relevant literature about BIM will be critically reviewed in this section to assess its potential use as cooperation, integration and coordination set of tools and methods for complex projects with inter-organizational associations.
Despite the numerous potential barriers reported to the inter-organizational use of BIM (Fox and Hietanen, 2007), the relevance of BIM for the AEC industry can be better understood having an overview at the background of this technology. We will analyze the literature on the background of BIM and later we will review the potential benefits of this technology.
Show me more...
Despite the numerous potential barriers reported to the inter-organizational use of BIM (Fox and Hietanen, 2007), the relevance of BIM for the AEC industry can be better understood having an overview at the background of this technology. We will analyze the literature on the background of BIM and later we will review the potential benefits of this technology.
Show me more...
Labels:
BIM,
Master Thesis,
Project Management
MT - Using BIM as a PM Tool: 2.1 – Project Complexity and Inter-Organizational Collaboration
Master Thesis. Sub-Chapter 2.1 Project Complexity and Inter-Organizational Collaboration
Català - Castellano - Deutsch
A project is “a temporary endeavour undertaken to create a unique product, service, or result” (PMI, 2004: p. 5). Defining what a Complex Project is may not be that easy, but some attempts have been made. Simon (1982, cited in Williams 2002) defines a complex system as “one made up of a large number of parts that interact in a non-simple way”. Morris and Hough (1987, cited in Williams, 2002) analyzing complex projects state that they “demand an exceptional level of management, and that the application of conventional systems developed for ordinary projects have been found to be inappropriate for complex projects”.
Construction Projects tend to be more and more complex (Chan et al., 2004 and Williams, 2002). This is due to an increase in the use of CE (Williams 1999) and the increase of number of stakeholders and PM tools and methods used (Bosch-Rekveldt et al. 2010).
Baccarini (1996) mentioned organizational complexity as a key defining element of complex projects. On the other hand, Williams (1999) defined project complexity as characterised by two dimensions, with two sub-dimensions each (Figure 2.1).
Complex Projects require inter-organizational associations (Maurer, 2010). To ensure success in inter-organizational project ventures, trust between the different project partners is acknowledged as a key success factor (Maurer, 2010 and Kadefors, 2004). Because of the nature of work in these inter-organizational ventures there is “highly recognized need for better integration, cooperation, and coordination of construction project teams” (Cicmil & Marshall 2005, cited in Maunula, 2008).
Figure 2.1 Dimensions of Project Complexity (after Williams, 1999: p.271)
Inter-organizational information systems [IOIS] are one possible way to cope with the integration, cooperation, and coordination challenges faced in construction (Maunula, 2008). IOIS are sometimes referred to as Web-based Project Management Systems [WPMS] (Forcada et al., 2007; Nitithamyong and Skibniewski, 2004), Web-Collaborative Extranets [WCEs] or Document Management Systems [DMS] (Ajam et al. 2010). This research will use the term IOIS for it seems more generic and able to encompass all these different nomenclatures while highlighting the multi party collaborative nature of their use.
<-- Previous.......................................................................................................Next -->
Show me more...
Català - Castellano - Deutsch
A project is “a temporary endeavour undertaken to create a unique product, service, or result” (PMI, 2004: p. 5). Defining what a Complex Project is may not be that easy, but some attempts have been made. Simon (1982, cited in Williams 2002) defines a complex system as “one made up of a large number of parts that interact in a non-simple way”. Morris and Hough (1987, cited in Williams, 2002) analyzing complex projects state that they “demand an exceptional level of management, and that the application of conventional systems developed for ordinary projects have been found to be inappropriate for complex projects”.
Construction Projects tend to be more and more complex (Chan et al., 2004 and Williams, 2002). This is due to an increase in the use of CE (Williams 1999) and the increase of number of stakeholders and PM tools and methods used (Bosch-Rekveldt et al. 2010).
Baccarini (1996) mentioned organizational complexity as a key defining element of complex projects. On the other hand, Williams (1999) defined project complexity as characterised by two dimensions, with two sub-dimensions each (Figure 2.1).
Complex Projects require inter-organizational associations (Maurer, 2010). To ensure success in inter-organizational project ventures, trust between the different project partners is acknowledged as a key success factor (Maurer, 2010 and Kadefors, 2004). Because of the nature of work in these inter-organizational ventures there is “highly recognized need for better integration, cooperation, and coordination of construction project teams” (Cicmil & Marshall 2005, cited in Maunula, 2008).
Inter-organizational information systems [IOIS] are one possible way to cope with the integration, cooperation, and coordination challenges faced in construction (Maunula, 2008). IOIS are sometimes referred to as Web-based Project Management Systems [WPMS] (Forcada et al., 2007; Nitithamyong and Skibniewski, 2004), Web-Collaborative Extranets [WCEs] or Document Management Systems [DMS] (Ajam et al. 2010). This research will use the term IOIS for it seems more generic and able to encompass all these different nomenclatures while highlighting the multi party collaborative nature of their use.
Show me more...
Labels:
BIM,
Master Thesis,
Project Management
Merry Christmas and Happy New Year. And a Little Present
Everyone is wishing each other Merry Christmas, or Happy Holidays or whatever, here comes mine with a little present in case you wanna have some Revit fun this holidays
Show me more...
Show me more...
Labels:
Revit
Revit: Creating a Basic Wall with Stacked Materials Using the Split Region Tool
Basic walls can behave like stacked walls in certain way if you know how to use the Split Region and Merge Tools.
Show me more...
Show me more...
Labels:
Revit
MT - Using BIM as a PM Tool: 2.- Literature Review
Due to the scope of this dissertation, three main topics were identified, and relevant literature for each of them has been analyzed. The topics are:
Let’s start with the first topic for it has a wider scope and will help us understand the overall framework in which BIM has a role to play and the gaps in current practice that could be bridged by the correct implementation of BIM.
<-- Previous....................................................................................................................Next -->
Show me more...
- Project complexity and inter-organizational collaboration
- The role of BIM in improving the delivery of construction projects
- The current status of BIM and other ICT in the AEC Industry
Let’s start with the first topic for it has a wider scope and will help us understand the overall framework in which BIM has a role to play and the gaps in current practice that could be bridged by the correct implementation of BIM.
Show me more...
Labels:
BIM,
Master Thesis,
Project Management
MT - Using BIM as a PM Tool: 1.3- Research Question and Objectives
On the previous sections we have seen that the implementation of BIM is not homogeneous in all countries. We have also noted that despite the increase in literature related to BIM in recent years (Table 1.2 and Figure 1.3) PM scholars have ignored BIM as a tool to be considered in PM research.
Considering the increased complexity of construction projects mentioned on the first section of this chapter, any tools that help optimize the design and construction process should be analyzed if they help practitioners cope with this increased project complexity. On the other hand, PM scholars have for too long ignored the study of BIM (Table 1.2), despite its potential benefits that we will alter see, despite the increased interest by other field’s scholars (Figure 1.3) and by construction professionals in general (Figure 1.4)
The intention of this research is to study BIM from the PM point of view, and to do this, this paper tries to answer the question: “Is BIM a Project Management Tool? How can BIM help Project Managers succeed in delivering complex construction projects”? The author’s intention is to proof based on existing literature and empirical evidence that the answer to the first question is affirmative and that the answer to the second one includes a wide range of ways in which BIM can be a helpful PM Tool.
Parallel and as a consequence to this search for answers, several research objectives are defined:
1. To identify in which aspects is BIM implementation showing more benefits for the delivery of construction projects
2. To compare the benefits of BIM with the role of the Project Manager
3. To define which role should the Project Manager assume within the BIM framework.
The intention of the author is in no way to produce a promotional pamphlet for a specific BIM platform, nor is it to ignore the challenges and shortcomings of BIM platforms. For this reason, another research objective is defined as:
4. To analyze the existing challenges for BIM implementation and estimate future developments that might mitigate these challenges.
The research methods to answer the research question and objectives will be described in the Methodology chapter of this paper. A key aspect that lead to the definition of the research methodology is the in depth analysis of relevant literature. The following chapter will deal with this topic, since despite the lack of references from the International Journal of Project Management there are plenty of scholars from other related research fields that have analysed the role of BIM (Table 1.2).
<-- Previous..................................................................................................................Next -->
Show me more...
Considering the increased complexity of construction projects mentioned on the first section of this chapter, any tools that help optimize the design and construction process should be analyzed if they help practitioners cope with this increased project complexity. On the other hand, PM scholars have for too long ignored the study of BIM (Table 1.2), despite its potential benefits that we will alter see, despite the increased interest by other field’s scholars (Figure 1.3) and by construction professionals in general (Figure 1.4)
The intention of this research is to study BIM from the PM point of view, and to do this, this paper tries to answer the question: “Is BIM a Project Management Tool? How can BIM help Project Managers succeed in delivering complex construction projects”? The author’s intention is to proof based on existing literature and empirical evidence that the answer to the first question is affirmative and that the answer to the second one includes a wide range of ways in which BIM can be a helpful PM Tool.
Parallel and as a consequence to this search for answers, several research objectives are defined:
1. To identify in which aspects is BIM implementation showing more benefits for the delivery of construction projects
2. To compare the benefits of BIM with the role of the Project Manager
3. To define which role should the Project Manager assume within the BIM framework.
The intention of the author is in no way to produce a promotional pamphlet for a specific BIM platform, nor is it to ignore the challenges and shortcomings of BIM platforms. For this reason, another research objective is defined as:
4. To analyze the existing challenges for BIM implementation and estimate future developments that might mitigate these challenges.
Figure 1.4 Google Search Trends for CAD vs. BIM (Google Trends, 2010)
The research methods to answer the research question and objectives will be described in the Methodology chapter of this paper. A key aspect that lead to the definition of the research methodology is the in depth analysis of relevant literature. The following chapter will deal with this topic, since despite the lack of references from the International Journal of Project Management there are plenty of scholars from other related research fields that have analysed the role of BIM (Table 1.2).
Show me more...
Labels:
BIM,
Master Thesis,
Project Management
Subscribe to:
Posts (Atom)